- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Fox, Jacob (3)
-
Himwich, Zoe (3)
-
Mani, Nitya (3)
-
Zhou, Yunkun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study analogues of Sidorenko’s conjecture and the forcing conjecture in oriented graphs, showing that natural variants of these conjectures in directed graphs are equivalent to the asymmetric, undirected analogues of the conjectures.more » « lessFree, publicly-accessible full text available July 4, 2026
-
Fox, Jacob; Himwich, Zoe; Mani, Nitya (, Journal of Graph Theory)
-
Fox, Jacob; Himwich, Zoe; Mani, Nitya (, Random Structures & Algorithms)Abstract For an oriented graph , let denote the size of aminimum feedback arc set, a smallest edge subset whose deletion leaves an acyclic subgraph. Berger and Shor proved that any ‐edge oriented graph satisfies . We observe that if an oriented graph has a fixed forbidden subgraph , the bound is sharp as a function of if is not bipartite, but the exponent in the lower order term can be improved if is bipartite. Using a result of Bukh and Conlon on Turán numbers, we prove that any rational number in is optimal as an exponent for some finite family of forbidden subgraphs. Our upper bounds come equipped with randomized linear‐time algorithms that construct feedback arc sets achieving those bounds. We also characterize directed quasirandomness via minimum feedback arc sets.more » « less
An official website of the United States government
